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We consider triad dynamics as it was recently considered by Antal et al. �Phys. Rev. E 72, 036121 �2005��
as an approach to social balance. Here we generalize the topology from all-to-all to the regular one of a
two-dimensional triangular lattice. The driving force in this dynamics is the reduction of frustrated triads in
order to reach a balanced state. The dynamics is parametrized by a so-called propensity parameter p that
determines the tendency of negative links to become positive. As a function of p we find a phase transition
between different kinds of absorbing states. The phases differ by the existence of an infinitely connected
�percolated� cluster of negative links that forms whenever p� pc. Moreover, for p� pc, the time to reach the
absorbing state grows powerlike with the system size L, while it increases logarithmically with L for p� pc.
From a finite-size scaling analysis we numerically determine the static critical exponents � and �� together
with �, �, �, and the dynamical critical exponents �� and �. The exponents satisfy the hyperscaling relations.
We also determine the fractal dimension df that satisfies a hyperscaling relation as well. The transition of triad
dynamics between different absorbing states belongs to a universality class with different critical exponents.
We generalize the triad dynamics to four-cycle dynamics on a square lattice. In this case, again there is a
transition between different absorbing states, going along with the formation of an infinite cluster of negative
links, but the usual scaling and hyperscaling relations are violated.
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I. INTRODUCTION

Recently Antal et al. �1� proposed a so-called triad dy-
namics to model the approach to social balance �2–4�. An
essential ingredient in the algorithm is the reduction of frus-
tration in the following sense. We assign a value of +1 or −1
to a link �or bond� in the all-to-all topology if it connects two
individuals who are friends or enemies, respectively. We call
the sign ±1 of a link its spin. If the product of links along the
boundary of a triad is negative, the triad is called frustrated
�or imbalanced�, otherwise it is called balanced �or unfrus-
trated�. The state of the network is called balanced if all
triads are balanced. The algorithm depends on a parameter
p� �0,1�, called the propensity parameter. It determines the
tendency of the system to reduce frustration via flipping a
negative link to a positive one. For an all-to-all topology
Antal et al. predict a transition from an imbalanced nonab-
sorbing stationary state for p
1/2 to a balanced absorbing
state for p�1/2. Here the dynamics is motivated by social
applications so that the notion of frustration from physics
goes along with frustration in the psychological sense. The
mathematical criterion for checking the status of frustration
is the same.

In a recent paper �5� we generalized the triad dynamics in
two aspects. The first generalization refers to a k-cycle dy-
namics which contains the triad dynamics for k=3. Here it
turned out that the main difference comes from the difference
of whether k is even or odd, since the phase structure is
symmetric about p=1/2 for k even. Even in the infinite-
volume limit there are only absorbing states, apart from the

transition point at p=1/2. The second generalization con-
cerned the network topology from all-to-all connections to a
diluted network. We studied the phase structure as a function
of the propensity p and the dilution. As it turned out, the
diluted k-cycle dynamics can be mapped on a certain satis-
fiability problem in computer science, the so-called
k-XOR-SAT problem �6�, and socially balanced states in one
problem correspond to all logical constraints satisfied in the
k-XOR-SAT problem. In both models we have phases of im-
balanced nonabsorbing states in the infinite-volume limit,
separated by a phase transition from phases of balanced or
absorbing states. In a finite volume one only observes bal-
anced states, but as a remnant of the infinite-volume phase
structure, the time to reach the absorbing states differs in a
characteristic way.

In this paper we study triad dynamics on a two-
dimensional triangular lattice and four-cycle dynamics
�called tetrad dynamics� on a square lattice. From the inter-
pretation as an approach to social balance, triad or tetrad
dynamics on a regular topology are not more realistic than
on an all-to-all topology. Still, triad dynamics shows inter-
esting features in terms of a percolation transition if we com-
pare snapshots of frozen states for different values of p. Also
for tetrad dynamics we observe a transition between different
absorbing states, but the description in terms of a percolation
transition fails. As we shall see, due to the restrictive topol-
ogy, imbalanced triads and tetrads allow only two elementary
processes: either they diffuse or they annihilate each other.
As a result, the system always approaches a balanced absorb-
ing state; nevertheless we observe a transition as a function
of the propensity parameter p, this time between different
absorbing states. The difference is characterized by the pres-
ence or absence of an infinite cluster of connected unfriendly
�negative� links and for triad dynamics by the time to reach
these frozen states. The parameter p should not be confused
with the occupation probability of a single bond with a posi-
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tive sign as it is usually used in connection with bond per-
colation. Therefore, here for p� pc we observe an infinite
cluster of negative links, while such a cluster is absent for
p� pc. For triad dynamics the time to reach the frozen state
grows logarithmically with the system size for p� pc and as
a power of the size for p� pc. In contrast, for tetrad dynam-
ics it grows as a power of the system size only at the transi-
tion point, while it grows logarithmically above and below
pc. For triad dynamics we numerically determine the critical
exponents from a finite-size scaling analysis of the frozen
patterns. We analyze the probability P� for a link to belong
to the infinite cluster that serves as an order parameter as
well as the order parameter susceptibility and the distribution
of clusters of finite size s. The static critical exponents �, ��,
�, �, and � satisfy the usual hyperscaling relations as well as
the fractal dimension df and the dynamical critical exponents
�� and �. The critical exponents turn out to be new and com-
pletely different from those of standard percolation in two
dimensions �7,8�.

The outline of the paper is the following. In Sec. II we
define the triad dynamics on a triangular lattice. In Sec. III
we analyze the finite-volume dependence of the frozen states
as a function of the propensity parameter p and present the
results for the static critical exponents as well as for the
fractal dimension. Moreover, we analyze the finite-time de-
pendence of the geometrical properties of the evolving states
as a function of p and report the values of the dynamical
critical exponents. Section IV deals with tetrad dynamics on
a square lattice for which the hyperscaling relations are vio-
lated. In Sec. V we summarize the conclusions.

II. TRIAD DYNAMICS

Our dynamical system is defined on an undirected graph
�network� composed of nodes and links. Each link �i , j� be-
tween the nodes i and j takes spin values ��i,j�=−1 or ��i,j�
= +1 if the nodes i and j are “enemies” or “friends,” respec-
tively. A triad ��� �i , j ,k� is characterized by the values as-
signed to its three links �i , j�, �j ,k�, and �k , i�. We have four
types of triads, depending on the number of negative links
they contain in their boundary: 
0, 
1, 
2, and 
3, where the
subscript stands for the number of negative �or “unfriendly”�
links. We use the standard notion of social balance as pro-
posed in �2,3� and apply this notion to triads. The sign of a
triad is defined as the product of the spins assigned to the
links of the triad. A triad is considered as “balanced” or
“unfrustrated” if its sign is positive, otherwise it is called

“imbalanced” or “frustrated.” The triads 
0 �all friends� and

2 �two friends have the same enemy� are balanced, while
the triads 
1 and 
3 are imbalanced. The network itself is
called balanced if and only if all triads belonging to the
network are balanced.

As in �1,5� we perform a local unconstrained dynamics in
order to reduce the frustration of the network. As it turns out,
the local algorithm always drives the network to a fully bal-
anced state without frustrated triads, but the time it needs for
reaching the frozen state depends on the choice of param-
eters. At each update event one triad is selected at random. If

FIG. 1. Local dynamics of one update event. The imbalanced
triads are represented as filled triangles, while the balanced ones as
empty triangles. The shared link is represented as bold; this is the
link involved in the update event. �a� When the update event flips
the link shared by one imbalanced and one balanced triad we have
diffusion. �b� When the update event flips the link shared by two
imbalanced triads we have annihilation.

FIG. 2. Typical frozen configurations for a triangular lattice with
periodic boundary conditions, with linear size L=129 and for dif-
ferent values of p: �a� p=0.44, �b� p= pc=0.4625, �c� p=0.48. In the
plots only negative links are shown.
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the selected triad is balanced �type 
0 or 
2� nothing hap-
pens. If the selected triad is imbalanced �type 
1 or 
3� it is
updated into a balanced one by flipping one of its link. In
particular a triad 
1 is changed with probability p into a triad

0 �flipping the only negative link of the triad 
1�, and it is
changed with probability 1− p into a triad 
2 �choosing at
random one of the two positive links belonging to the triad

1 and inverting the spin to a negative value�. A triad 
3 is
changed into a triad 
2 with probability 1, choosing at ran-
dom one of its three negative links and reversing its spin to a
positive sign. We summarize the updating rules of the local
algorithm in the following scheme:


0←
p


1 ——→
1−p


2←
1


3. �1�

One time unit has passed when the number of single update
events equals the total number of links M of the network.

We study the triad dynamics on two-dimensional triangu-
lar lattices with periodic boundary conditions. We character-
ize a triangular lattice using its linear size L. The total num-
ber of sites in the lattice is N=L�L−1�. The term L−1 results
from the periodic boundary conditions. The total number of
links of the lattice is M =3N, while the total number of triads
is N
=2N. In particular each link is shared only by two
nearest-neighbor triads, so that the triad dynamics cannot
increase the total number of imbalanced triads: a single up-
date changes one selected imbalanced triad into a balanced
one, while it modifies the other triad, sharing the same up-
dated link, either from balanced to imbalanced �Fig. 1�a�� or
from imbalanced to balanced �Fig. 1�b��. The former we call

FIG. 3. Binder cumulant UL as a function of the propensity
parameter p. The main plot shows UL in the vicinity of the critical
point. The numerical results for different linear lattice sizes L have
a common intersection at pc�0.4625. The inset shows the ln-ln plot
of �dUL /dp�pc

. From the relation �dUL /dp�pc
�L1/�� we find 1/��

=0.64�7� �solid line�.

FIG. 4. Probability P� that a bond belongs to the largest cluster
as a function of p and for different linear sizes of the lattice. We
perform a finite-size scaling for determining the critical point pc

=0.4625�5� �see the zoom around the critical point in the inset �a��
with the critical exponents � /��=0.297�3� �solid line� as is shown
in the inset �b�, where P� at the critical point is plotted as a function
of the linear size of the lattice L. The numerical simulations are the
same as in Fig. 3.

FIG. 5. Same data as in Fig. 4, but now the abscissa is rescaled
according to �p− pc�L1/�� with 1/��=0.64. The inset shows a zoom
around zero. The numerical simulations are the same as in Fig. 3.

FIG. 6. Susceptibility � of P� as a function of p. In the main
plot we zoom the region around the critical point pc, while in the
inset we plot � at the critical point as a function of L leading to
� /��=1.28�3� �solid line�. The numerical simulations are the same
as in Fig. 3.
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diffusion, because the imbalanced triad diffuses, the latter
annihilation between two imbalanced triads.

Obviously, for a finite-size system we always observe a
frozen configuration as the stationary state �see Fig. 2�, inde-
pendently of the initial configuration. From now on we focus
on these frozen configurations and study their geometrical
properties by using the standard tools of percolation theory
�7�. It should be noticed, however, that the dynamical param-
eter p of the triad dynamics is very different from the occu-
pation probability as it is defined in percolation theory, where
it is also called p.

III. NUMERICAL SIMULATIONS TO DETERMINE
THE CRITICAL THRESHOLD AND

THE CRITICAL EXPONENTS

In order to study the geometry of the frozen configura-
tions, we consider the distribution of negative links on the
lattice. In particular we numerically compute the probability
that a negative link belongs to an infinite cluster P�

=M�
− /M, as the ratio of the number of links belonging to the

largest cluster of connected negative links M�
− to the total

number of links M.

A. Critical propensity parameter pc

Let us first determine the critical point pc. Binder’s cumu-
lant �9�, defined as the fourth-order reduced cumulant of the
probability distribution

UL = 1 −
	P�

4 

3	P�

2 
2 , �2�

allows us to determine the critical point pc without tuning
any parameter. In Eq. �2� 	·
 stands for the average over all
realizations of the distribution. It is known that the Binder
cumulant should satisfy the scaling relation �9�

UL = Ũ��p − pc�L1/��� , �3�

with Ũ�·� a universal function. From Fig. 3 it is obvious that
the Binder cumulants for different linear sizes of the lattice L
have a common intersection at p=0.4625�5�, so that we use
pc=0.4625 as the critical propensity parameter in the follow-
ing analysis. The numerical results of Fig. 3 are extracted
from numerical simulations for L=17, 33, 49, 65, 97, 129,
193, and 257. The averages are taken over several frozen
configurations as they are reached as absorbing states of the
triad dynamics, starting from initial conditions where each
link is randomly assigned a value of +1 or −1 with the same
probability 1 /2. The number of realizations is 104 for values
of L up to 65 and 103 for larger values of L.

FIG. 7. Finite-size scaling for the susceptibility �. The data are
the same as in Fig. 6. In the inset we zoom the function �L−�/��

around the critical point pc, while in the main plot we rescale the
abscissa as �p− pc�L1/��. The critical exponents are chosen as
� /��=1.28 and 1/��=0.64.

FIG. 8. Distribution of the cluster size ns�pc� at the critical point
pc and for L=257 �main graph�. The distribution is extracted from
103 frozen configurations. As expected this distribution follows a
power law ns�s−�; the solid line plotted here corresponds to �
=2.19. The inset shows the second moment of the distribution of
the cluster size M2 at the critical point as a function of the linear
size of the lattice. M2 increases as a power of the linear size L of the
lattice with exponent � /��=1.28�2� �solid line�.

FIG. 9. Numerical test of the validity of Eq. �7�. We plot the
ratio ns�p� /ns�pc�, where ns is the distribution of the cluster size, as
a function of the rescaled quantity �p− pc�s� with � chosen as 0.41
from Eq. �13� knowing � and �. The main plot refers to L=257, the
inset to L=129.
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B. Critical exponent ��

In order to extract the value of the critical exponent ��

that characterizes the divergence of the correlation length ��

in the vicinity of the critical point, we consider the absolute
value of the first derivative of the Binder cumulant calculated
at pc, �dUL /dp�pc

. We expect from Eq. �3� to have
�dUL /dp�pc

�L1/��. This relation is actually satisfied for
1 /��=0.64�7� as it is seen in the inset of Fig. 3, from which
��=1.6�2�. For the numerical estimate of the derivative of

UL we use �dUL /dp�pc
= ��q=1

Q qaL,qpc
q−1� where the coefficients

aL,q are obtained by interpolating the cumulant UL with a
polynomial UL=�q=0

Q aL,qpq. Here we choose Q=5 and re-
strict the interpolation to the interval �0.46,0.465�.

C. Critical exponent �

According to percolation theory, the probability P� satis-
fies the following finite-size scaling relation:

P� = L−�/��P̃��p − pc�L1/��� , �4�

where pc is the critical value of the propensity parameter p
for which the phase transition occurs. �In the infinite-volume

limit we have P�=1 for p� pc, while P�=0 for p� pc.� P̃�·�
is a universal function. A plot of P�L�/�� as a function of p
and for different values of L is shown in Fig. 4. For a value
of � /��=0.297�3� �see inset �b�� all curves have an intersec-
tion in pc=0.4625�5� as is more obvious from the inset �a�.
Using for �� the value calculated so far, we obtain �
=0.46�5�.

If we rescale the abscissa as �p− pc�L1/�� with pc

=0.4625 and 1/��=0.64, all curves for different values of L
collapse into one �see Fig. 5�. This is true especially close to
zero as the inset of Fig. 5 clearly shows.

D. Critical exponent �

Moreover, in Fig. 6 we plot the susceptibility

� = M�	P�
2 
 − 	P�
2� , �5�

in which we only show a zoom around p= pc, while in the
inset we plot the value of �, at the critical point, as a function
of the linear size of the lattice L. From the inset we find
� /��=1.28�3�, because ��L�/�� at pc; therefore �=2.0�3�.
The susceptibility should satisfy the finite-size scaling rela-
tion

FIG. 10. Mass of negative links M inside a triangular box with
r links per side. The mass is measured on a triangular lattice with
L=257 and periodic boundary conditions. Each point is given by
the average over 103 frozen configurations, while the number of
boxes considered for each r is 102. The numerical results fit a power
law with df =1.703 �solid line� and d=2 �dotted line�.

FIG. 11. Average time T needed for reaching a frozen configu-
ration. The data sets are the same as in Fig. 3. In �a� we plot the
standard variance �T over the average value T as a function of p and
for different values of L. The peaks of this ratio are all around the
critical point pc. In �b� we show a ln−ln plot of T as a function of
the linear size of the lattice L at the critical point pc �full circles�
and at p=1/3 �open circles�. It implies that T�Lz for p� pc. We
have z=2.36�1� �solid line� at pc, while z=2.24�2� �dotted line� at
p=1/3. In �c� the plot of T versus the logarithm of L for p=1 �full
circles� and 3/4 �open circles� shows that T� ln�L� for p� pc. The
numerical simulations are the same as in Fig. 3.

FIG. 12. Finite-size scaling of the time-dependent behavior of
the percolation probability P��t�. The values of the critical expo-
nents used here are � /��=0.297, z=2.36, and �=0.126. The nu-
merical results are obtained by averaging over 104 realizations for
L=17 and 33, 103 realizations for L=49 and 65, and 102 realiza-
tions for L=97 and 129.
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� = L�/���̃��p − pc�L1/��� , �6�

where again �̃�·� is a universal function. This relation is per-
fectly satisfied �cf. Fig. 7�.

E. Critical exponents � and �

Furthermore, we consider the probability distribution of
having ns clusters with s negative links. ns is given by the
ratio of the number of clusters of size s to the total number of
clusters. As it is known from percolation theory, ns should
satisfy

ns = s−�ñ��p − pc�s�� , �7�

where � and � are critical exponents and ñ�·� is a universal
function. We can determine the critical exponent � �also
called the Fisher exponent� by plotting the distribution of the
cluster sizes s at the critical point pc. This distribution is
calculated in Fig. 8 for L=257. The distribution fits with a
power law s−�, here plotted as solid line with �=2.19. We
checked that the same exponent fits also for smaller values of
L.

In Fig. 9 we numerically determine the critical exponent
�. The figure shows the plot of the ratio ns�p� /ns�pc�. Using
the rescaled variable �p− pc�s� as abscissa, all the curves
corresponding to different values of the cluster size s �24


s�25, 25
s�26, 26
s�27, etc.� collapse to a single
function for �=0.41, as expected �see, e.g., �7��.

F. Check of the critical exponent �

From the cluster distribution it is possible to verify the
value of the critical exponent � that was calculated before. It
is known that the second moment of the distribution of the
cluster size

M2 = �
s

s2ns �8�

should scale according to M2�L�/�� at the critical point pc.
The numerical value found for the ratio � /��=1.28�2� is
consistent with the former one obtained via the susceptibility
�see the inset of Fig. 8�.

G. Fractal dimension df

The percolating cluster can be further characterized in
terms of a fractal dimension df. The fractal dimension df is
easily computed using a box counting method �8�. We count
how many negative links M�r� belong to a triangular box
with r links per side. The measurement is performed for L
=257 at the critical point pc. We analyze 103 frozen configu-
rations, for each of them we consider 102 different boxes.
The mass M�r� per box is plotted in Fig. 10. As expected we
observe the crossover phenomenon

M�r� = �rdf if r � ��,

rd if r � ��,

 �9�

where d=2 in this case. The numerical results fit with a
power law with df =1.703 and d=2, respectively.

H. Time to reach the frozen states

So far we have characterized the geometrical properties of
the final absorbing configuration. As a next step we focus on
the dynamical features and determine the time the system

FIG. 13. Typical frozen configurations for a square lattice with
periodic boundary conditions, with linear size L=128 and for dif-
ferent values of p: �a� p=0.48, �b� p= pc=0.5, �c� p=0.52. In these
plots are shown only the negative links.
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needs to reach the final frozen configurations. In Fig. 11�a�
we plot the ratio of the variance �T and its average value T as
a function of p. It is interesting to notice that �T /T has a
maximum around pc. Below the critical point pc, the relax-
ation time T is governed by a power-law relation in the linear
size of the lattice L: T�Lz. Our numerical analysis reveals
z=2.36�1� at pc and z=2.24�1� at p=1/3 �see Fig. 11�b��.
Furthermore, above the critical point pc, T grows logarithmi-
cally with L: T� ln�L� �see Fig. 11�c�, where we show the L
dependence of T for p=3/4 and for p=1�. The different size
dependence of the time the system needs to reach a frozen
configuration in both phases can be understood in qualitative
terms. For p� pc there is a lower probability for having
negative links. The stable configurations forming out of these
links are mainly local objects like star-like configurations
which do not percolate through the lattice �see Fig. 1�c��.
Therefore the time to reach such a state characterized by
local objects depends weakly on the system size, that is loga-
rithmically. For p� pc there is a high probability of having
negative links. However, here large loops that finally perco-
late through the lattice make up the stable configurations �see
Figs. 1�a� and 1�b��. So the time to reach this configuration is
more sensitive to the system size: it grows as a power of the
size.

I. Dynamical critical exponents �¸ and �

The existence of the dynamical critical exponent z sug-
gests the possibility to analyze the percolation transition of
our model from a dynamical point of view. Therefore we
performed other numerical simulations with the aim of de-
termining some dynamical critical exponents. We followed a
procedure similar to the one usually applied for other time-
dependent critical phenomena �10�. Starting from a fully oc-
cupied lattice �i.e., all the links of the triangular lattice are set
to be negative so that P��t=0�=1�, we observe how P�

evolves in time. According to finite-size scaling analysis we
should expect, at the critical point pc, a behavior of the type

P��t� � L−�/��f�t/Lz� , �10�

where f�·� is a suitable universal function. We numerically
test the validity of this relation. In Fig. 12 we plot P��t�L�/��

versus t /Lz, for p= pc and various lattice sizes L. The values
of � /�� and z calculated above are consistent with Eq. �10�,
since all curves for different values of L collapse into a
single curve. In analogy with other time-dependent critical
phenomena �10,11�, we may look at z as the ratio between
the critical exponent �� of the typical time-correlation length
�� of the percolation cluster and �� as the typical spatial
correlation length ��. This means z=�� /��, therefore know-
ing �� and z, we estimate �� to be 3.8�5�.

Moreover we determine the critical exponent � of the time
decay of P� at the critical pc: P��t�� t−�. �P��t� is expected
to decay to zero at pc, because there the ratio of links be-
longing to the infinite cluster over all links is still vanishing
in the infinite volume. Choosing a different initial value of
P� at time t=0 leads to the same powerlike long-time behav-
ior in time, so P��0�=1 is chosen for convenience.� There-
fore, by means of the same simulations as used before it is
possible to test the validity of the scaling relation

P��t� � t−�g�t/Lz� , �11�

where g�·� is a proper universal function. We show the result
of this numerical test in the inset of Fig. 12, where we im-
pose �=0.126. The actual value of � used in this plot is
obtained from the known values of � and �� and the hyper-
scaling relation of Eq. �15� that connect the three critical
exponents �, �� and �. The numerical results reported in both
plots of Fig. 12 are obtained by averaging over a large num-
ber of realizations �104 for L=17 and 33, 103 for L=49 and
65, 102 for L=97 and 129�.

J. Universality class of triad dynamics in two dimensions

We list the critical exponents for the phase transition be-
tween different absorbing states in Table I. The critical ex-
ponents satisfy the known hyperscaling relations. For ex-

FIG. 14. Probability P� that a link belongs to the largest cluster
as a function of p and for different linear sizes of the lattice. The
ratio of critical exponents � /��=1.05�2� at the critical point pc

=0.5 is shown in the inset.

TABLE I. Critical threshold and critical exponents, numerically
determined for triad dynamics on two-dimensional triangular lat-
tices. The critical exponents of triad dynamics on triangular lattices
are compared with those of standard percolation in two dimensions
�which does not have any dynamical exponents�.

Triad dynamics
Percolation

in two dimensions�7�

pc 0.4625�5�
� 0.46�5� 5/36�0.138

� 2.0�3� 43/18�2.388

�� 1.6�2� 4/3�1.333

� 0.41�6� 36/91�0.396

� 2.19�1� 187/91�2.055

df 1.703�3� 91/48�1.895

�� 3.8�5� None

� 0.126�1� None
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ample, it is known from percolation theory that the critical
exponents �, �, �, and � are related by

� =
1

2
�5 −

� − �

� + �
� �12�

and

� =
1

� + �
. �13�

Calculating � and � from the former equations, using the
numerically obtained values of � and �, we find �=2.19�1�
and �=0.41�6�. Both values are consistent with Figs. 8 and
9.

The fractal dimension is related to the ratio � /�� by the
hyperscaling relation

df = d −
�

��

. �14�

From this relation we find df =1.703�3� in agreement with
Fig. 10.

The exponent of the time-decay of the percolation prob-
ability P��t�� t−� at the critical point is related to the critical
exponents � and �� by the hyperscaling relation �10�

� =
�

��

. �15�

From this relation we calculate �=0.126�1� in agreement
with Fig. 12.

The errors of pc and of the critical exponents as indicated
in Table I arise as follows. The critical point pc is directly
estimated from Fig. 3, verified in Fig. 4, and supported by
Fig. 10. The only source of error here is given by the step
size used for varying the propensity parameter p. Of course

this step size is related to the parameters of the simulations.
It can be decreased by increasing the system size and the
total number of simulations.

The critical exponents � /�� of Fig. 4�b�, 1 /�� of Fig. 3,
� /�� of Figs. 7 and 8, and z of Fig. 11 have errors due to the
linear fit in a double-logarithmic plane. In principle one
should also account for the propagation of the error entering
the value of the critical point pc=0.4625�5�, which we have
neglected here.

In order to check the validity of the hyperscaling relations
we evaluate the corrections to all derived quantities �� ,�, df,
��, and �� by using the standard formula for error propaga-
tion. The hyperscaling relations are then said to be satisfied if
they hold within these error bars.

To our knowledge the critical exponents calculated so far
are new �7,8,11�. Therefore, the percolation transition be-
tween different absorbing states of triad dynamics on two-
dimensional lattices can be described by standard percolation
theory, but the transition seems to belong to a new univer-
sality class.

IV. TETRAD DYNAMICS

The notion of social balance can be extended to any geo-
metric figure with k links �in graph theory denoted as
k-cycles� �3,5�. As it turned out in �5� for an all-to-all topol-
ogy and a diluted topology, generalizing the triad dynamics
to a k-cycle dynamics leads to qualitative differences in the
phase structure of which the main differences are due to k
being even rather than being larger than three. In this section
we therefore focus on the case of k=4 and call the four-
cycles tetrads defined on square lattices. According to the
number of negative links belonging to a particular tetrad, we
distinguish five types of tetrads: �0, �1, �2, �3, �4. The
updating rules of the unconstrained dynamics for triads of �1�

FIG. 15. Mass of negative links M inside a square box with r
links per side. This measure is used on a square lattice with L
=256 and periodic boundary conditions. Each point is given by the
average over 103 frozen configurations, while the number of boxes
considered at each r is 103. The solid line has the slope 0.95, a value
that is expected by the former measure of � /��. Actually it is not
consistent with the direct fit of the data from which we find df

=1.76�2� �dashed line�. The dotted line has slope d=2.

FIG. 16. Average time T needed for reaching a frozen configu-
ration. The simulations are the same as in Fig. 14. In �a� we plot the
standard variance �T over the average value T as a function of p and
for different values of L. The peaks of this ratio are all in the
vicinity of the critical point pc. In �b� we show a ln-ln plot of T as
a function of the linear size of the lattice L at the critical point
leading to T�Lz with z=2.35�1�. In �c� the plot of T versus the
logarithm of L for p=1 shows that T� ln�L�.
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are naturally extended to tetrads in the following way:

�0←
p

�1 ——→
1−p

�2←
p

�3 ——→
1−p

�4. �16�

The local tetrad dynamics is then applied to square lattices
with periodic boundary conditions. L denotes the linear size
of the lattice, i.e. the number of sites per row or per column.
The total number of sites of the lattice is N=L2, the total
number of links M =2N, and the total number of tetrads
N�=N.

Similarly to the case of triad dynamics on two-
dimensional triangular lattices, at a first glance there seems
to be a percolation transition also in case of tetrad dynamics.
The critical point pc should be equal to pc=0.5 due to the
symmetry of the system �16� under the simultaneous trans-
formation �i→−�i∀ i and p→1− p �see Fig. 13�.

However, differently from the triad dynamics, no scaling
relations hold in the vicinity of the transition at which again
an infinite cluster of negative links forms. The hyperscaling
relations are violated. For example, the relation �14� does not
hold because one can measure � /��=1.05�2� �Fig. 14� and
expect to have df =0.95�2�, while it is directly seen from Fig.
15 that df =1.76�2�.

Tetrad dynamics resembles triad dynamics. Either each
unstable tetrad diffuses, or two unstable tetrads annihilate if
they meet. Finite-size systems always reach a frozen con-
figuration within a finite time, so we can measure this time T.
As we can see from Fig. 16�a�, we find a symmetric behavior
around the critical point pc. At the critical point T scales

according to T�Lz with z=2.35�1� �see Fig. 16�b��, this
value is actually consistent with the one found for the triad
dynamics. Away from the critical point T� ln�L� �see Fig.
16�c��.

V. SUMMARY AND CONCLUSIONS

The driving force in triad dynamics is the reduction of the
number of frustrated triads. A state of zero frustration is
called a state of social balance. Imposed on a triangular lat-
tice, frustrated triads can diffuse or annihilate each other.
Depending on the value of the propensity parameter p the
final absorbing state can be characterized by the absence �p
� pc� or presence �p� pc� of an infinite cluster of negative
links. The time to reach the frozen configurations scales with
the system size in a way that further characterizes the phases:
it scales logarithmically for p� pc and in a powerlike way
for p� pc. The static critical exponents ��, �, �, �, and � as
well as the fractal dimension df and the dynamical critical
exponents �� and � satisfy hyperscaling relations within the
error bars. The values of these exponents seem to character-
ize a new universality class. The essential difference that we
observe for tetrad dynamics on a square lattice is the sym-
metry between the absorbing states in the different phases.
Again, an infinite cluster of negative links forms for p� pc,
but the time to reach the frozen configurations shows the
same dependence on the system size in both phases, with the
only exception at the transition point. The percolation picture
breaks down in the sense that no scaling and therefore no
hyperscaling relations are satisfied.
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